产品别名 |
芯片封装清洗剂,SIP系统级封装清洗剂,倒装芯片清洗剂,BGA芯片清洗剂 |
面向地区 |
全国 |
比如清洗剂的浓度,特别在使用在线通过式喷淋清洗工艺,清洗剂的浓度因为设备条件原因,会产生很大的变化,清洗剂在清洗机使用当中会产生气雾损失、带离损失,特别是气雾损失占比比较大,因为水基清洗剂中含大比例的水和其他组成成分,在一定温度下会产生挥发现象,挥发的比例,因为清洗剂品种不同而产生很大的差异,这样就需要严格控制清洗剂的浓度,才能清洗条件的准确,在线通过式清洗工艺中实现清洗剂在线的浓度检测是非常有必要的,监测和控制清洗剂使用中的浓度,并进行及时的调整,使清洗剂的浓度在可控的数据范围。
只有将各类工艺条件和参数,控制在确定的范围,才能终的清洗结果是理想的预期值。
关于清洗干净度,应特别关注芯片底部、器件底部残留物的清除状况,只有将micro gap的残留物清除才可真正实现残留物的完全清除而达到干净度的高要求。
电子组装污染物的危害
因为元器件的微型化、间距密集和导线间的电磁场力的存在,电子组装的可靠性越来越受到关注。因电子组装产生的污染物对电子设备危害的潜在风险也同时得到了足够的关注和需要避免。
在电子组装过程主要是极性(离子)污染物的危害。极性污染物易吸收同样是极性分子的水份形成酸性的局部环境,从而会电离出电荷的正、负离子,导致元器件腐蚀,表面绝缘电阻下降。在电位差的作用下,污染物中的带电的金属离子会发生电化学迁移、电迁移等。
电化学迁移失效机理有三要素1.离子残留2.电位差3.潮气,是带电离子在电磁场影响下通过助焊剂残残留、桥接导体等发现的迁移。电化学迁移会引起枝状晶体生长,枝状晶体生长时表面绝缘电阻降低,当枝晶生长严重时将出现漏电流或电气短路。
电迁移发生的三要素1.高强电流2.移动的金属原子3.高温,在电场影响下电子迁移造成金属离子在金属导体中移动的现象。电子的运动从阴极流向阳极,当电子的动量被转移到附近活跃的离子时,中断或间隙就在导体中形成,阻止了电流流过甚至形成开路失效。当在有限空间互联数量增加时,极性污染物能使导体桥接,导体桥接有利于离子的持续运动,通电或加温都导致电迁移加速。电子元器件的微型化,将导致电迁移的风险增加。
非极性(非离子)污染物分子没有偏心电子分布,在潮湿的环境不会电离出带电离子,因此不会出现化学腐蚀或电气故障。但会导致可焊性下降,影响焊接点外观及可检测性。焊接时部分树脂会在焊接温度下发生高温分解、氧化作用或不可预的聚合反应,形成改性的非离子污染物残留,这些残留即使在清洗后也不易脱离,留下白色或棕褐色残留物。白色残留物有趋向于吸湿性和导电性,在潮湿的环境下,敏感电路上会潜在的造成电流泄漏和杂散电压失效A。如果助焊材料的活性物质还存在于白色残留物中,在湿气环境下会发生电离,导至电化学迁移B。
当非极性污染物通过尘埃吸附了极性污染物,具有了极性污染物的特性也将导致电化学迁移或电气故障,如粘接剂残留、手指印油和油脂。同时油和油脂会导致可焊性下降。
微粒状污染物主要是导致焊点牢固性、焊接质量的下降,增加焊接时出现拉尖或桥接等风险,同时微小焊料球锡珠可能会导致导体间电气短路